Quantum-dot supercrystals for future nanophotonics
نویسندگان
چکیده
منابع مشابه
Quantum-dot supercrystals for future nanophotonics
The study of supercrystals made of periodically arranged semiconductor quantum dots is essential for the advancement of emerging nanophotonics technologies. By combining the strong spatial confinement of elementary excitations inside quantum dots and exceptional design flexibility, quantum-dot supercrystals provide broad opportunities for engineering desired optical responses and developing sup...
متن کاملQuantum dot nanophotonics – from waveguiding to integration
Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication process utilizing molecular self-assembly and can result in new QD photonic device structures in nano-s...
متن کاملQuantum Dot Molecules for Quantum Cellular Automata: Future Quantum Computer
Ordered quantum dot molecules are grown by a modified MBE growth using thin-capping and regrowth processes. This technique yields QDs which are uniform and aligned along [11̄0] directions. This paper presents an attempt to group 4-5 dots per each quantum dot molecule, in order to form a physical structure that can function as quantum cellular automata, giving rise to the possibility of developin...
متن کاملDeveloping 1D nanostructure arrays for future nanophotonics
There is intense and growing interest in one-dimensional (1-D) nanostructures from the perspective of their synthesis and unique properties, especially with respect to their excellent optical response and an ability to form heterostructures. This review discusses alternative approaches to preparation and organization of such structures, and their potential properties. In particular, molecular-s...
متن کاملIntegrated diamond networks for quantum nanophotonics.
We demonstrate an integrated nanophotonic network in diamond, consisting of a ring resonator coupled to an optical waveguide with grating in- and outcouplers. Using a nitrogen-vacancy color center embedded inside the ring resonator as a source of photons, single photon generation and routing at room temperature is observed. Furthermore, we observe a large overall photon extraction efficiency (1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2013
ISSN: 2045-2322
DOI: 10.1038/srep01727